Propagation of a light pulse in a dispersive mediumΒΆ

In this exercise we will solve the time evolution of a light pulse. We will describe its initial shape by function A(z,t=0), which is assumed to be Gaussian for simplicity:

A(z,t=0)=eβˆ’z2/2Οƒ2eik0z

In plots etc, we will always only work with the real part of the wave package.

import numpy as np
import matplotlib.pyplot as plt

A quick initial plot.

# properties of the wave package
sigmaz = 2
k0 = 5

# parameters for plotting
Nz = 512
zmax = 7.5

zlin = np.linspace(-zmax, zmax, Nz)
Az = np.exp(-zlin**2/2/sigmaz**2)*np.exp(1j*k0*zlin)
Aenv = np.exp(-zlin**2/2/sigmaz**2)

f, ax = plt.subplots()
ax.plot(zlin, Az.real, label = 'electric field');
ax.plot(zlin, Aenv, 'r', ls = '--', label='envelope');
ax.set_xlabel('position $z$[L]');
ax.set_ylabel(' $\mathcal{Re}(A)$');
ax.legend()
<matplotlib.legend.Legend at 0x10f3a09a0>
_images/02_wave_package_3_1.png

We would now like to understand, how this wave-package propagates. In a non-linear medium the propagation is not easily solved, but we have to know the dispersion relationship of the medium. In our case, we will use the relationship:

Ο‰(k)=k0vp+(kβˆ’k0)vg+Ξ“2(kβˆ’k0)2

For each single wavelength k, we then know the time evolution of the wave package to be:

a(k,t)=a(k,t=0)eβˆ’iΟ‰(k)t

And the full time evolution is then obtain through the Fourier transform

A(z,t)=∫dkeikza(k,t)

The intial wavepackage in Fourier spaceΒΆ

As we know A(z,t=0), we can now also directly calculate:

a(k)=12Ο€βˆ«dzeβˆ’ikzA(z)=12Ο€βˆ«dzeβˆ’i(kβˆ’k0)zeβˆ’z2/2Οƒ2

This is a Gaussian integral of the type ∫dzeβˆ’z2=Ο€. We will rewrite:

i(kβˆ’k0)z+z2/2Οƒ2=[z+i(kβˆ’k0)Οƒ2]22Οƒ2+(kβˆ’k0)2Οƒ22

We can now shift the limits of the integral to obtain:

a(k)=12Ο€eβˆ’(kβˆ’k0)2Οƒ22∫dzeβˆ’z22Οƒ2

Changing the variable of integration to zβ€²=z2Οƒ, we end up with the integral:

a(k)=2Οƒ2Ο€eβˆ’(kβˆ’k0)2Οƒ22∫dzβ€²eβˆ’zβ€²2=Οƒ2Ο€eβˆ’(kβˆ’k0)2Οƒ22

It is Gaussian centered around kc and of width Οƒk=1Οƒ

Nk = 512;
klin = k0 + np.linspace(-4/sigmaz, 4/sigmaz, Nk);
ak = sigmaz/np.sqrt(2*np.pi)*np.exp(-sigmaz**2/2*(klin-k0)**2)

f, ax = plt.subplots()
ax.plot(klin, ak);
ax.set_xlabel('wave vector $k$ [1/L]');
ax.set_ylabel(' $a(k)$');
_images/02_wave_package_6_0.png

Time evolution in k spaceΒΆ

We are now ready to simply calculate the time evolution of the wave package in k space. It is given by:

a(k,t)=Οƒ2Ο€eβˆ’Οƒ22(kβˆ’k0)2eβˆ’i[k0vp+(kβˆ’k0)vg+Ξ“2(kβˆ’k0)2]t

Quite importantly it remains a Gaussian in k, but only we complex numbers. Ordering in polynoms of k, we have:

a(k,t)=Οƒ2Ο€eβˆ’Οƒ2βˆ’iΞ“t2(kβˆ’k0)2eβˆ’i[k0vp+(kβˆ’k0)vg]t
# parameters of the dispersion relation. You can set them freely
vp = 1
vg = 0.5
gamma = 1

#time
tmax = 10; Nt = 100;

tlin = np.linspace(0, tmax, Nt)
ks, ts = np.meshgrid(klin, tlin);

# the dispersion relationship
omegak = k0*vp+(ks-k0)*vg+gamma/2*(ks-k0)**2
aks = sigmaz/np.sqrt(2*np.pi)*np.exp(-sigmaz**2/2*(ks-k0)**2)

akt = ak*np.exp(-1j*omegak*ts);

f, ax = plt.subplots()
im1 = ax.pcolormesh(ts, ks, akt.real, cmap = 'bwr')
ax.set_xlabel('time $t$')
ax.set_ylabel('wavevector $k$')
ax.set_title('time evolution in k space')
f.colorbar(im1)
<matplotlib.colorbar.Colorbar at 0x10f620670>
_images/02_wave_package_8_1.png

Time evolution in real spaceΒΆ

We have now everything assembled together to calculate the time evolution in real space:

A(z,t)=∫dkeikza(k,t)

Given the nice form of a(k,t), we can already read it off:

  • The width will be the inverse of Οƒx=1Οƒ2βˆ’iΞ“t

  • It is centered around vgt

  • It has some complicafted phase prefactor, which we will simply ignore here.

We then obtain:

A(z,t)∝eβˆ’(zβˆ’vgt)22(Οƒ2βˆ’iΞ“t)

To make it simpler to understand we rewrite:

1Οƒ2βˆ’iΞ“t=Οƒ2+iΞ“tΟƒ4+Ξ“2t2

The wave function has then the following form:

A(z,t)∝eβˆ’(zβˆ’vgt)22(Οƒ4+Ξ“2t2)(Οƒ2+iΞ“t)

This is a Gaussian that is centered at z=vgt with envelope:

Οƒx2(t)=Οƒ2+Ξ“2t2/Οƒ2
zs, ts = np.meshgrid(zlin, tlin);

# the dispersion relationship
sigmat_sq = sigmaz**2+gamma**2*ts**2/sigmaz**2

azt = np.exp(-(zs-vg*ts)**2/2/sigmat_sq);

f, ax = plt.subplots()
im1 = ax.pcolormesh(ts, zs, azt, cmap = 'Blues')
ax.set_xlabel('time $t$')
ax.set_ylabel('position $z$')
ax.set_title('time evolution in real space')
f.colorbar(im1)
<matplotlib.colorbar.Colorbar at 0x10f6f4b20>
_images/02_wave_package_11_1.png